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Abstract. Coupled 1-loop gap equations are studied numerically for non-Abelian electric and magnetic
screening in various versions of the three-dimensional effective gauge models. Corrections due to higher
dimensional and non-local operators are assessed quantitatively. Comparison with numerical Monte-Carlo
investigations suggests that quantitative understanding beyond the qualitative features can be achieved
only by going beyond the present treatment.

1 Introduction

An outstanding consequence of heating non-Abelian gauge
fields is the screening of static chromo-electric and -magne-
tic fields. Electric (Debye) screening is generated by non-
zero Matsubara modes both for Abelian and non-Abelian
gauge fields and its value at leading order has been known
since a long time. The dynamics of the non-Abelian zero
modes is quite complex [1] and it leads, at least in the
Schwinger-Dyson approach to the static magnetic gluon
two-point function, to the generation of a magnetic screen-
ing mass [2]. Non-zero magnetic mass was obtained from
all variants of the magnetic gap equation in the effective
three-dimensional gauged Higgs and also in pure gauge
theories [2–6].

The spectra of screening masses in the SU(2) Higgs
model were also studied in lattice Monte-Carlo simula-
tions by measuring various correlation functions of gauge
invariant operators [7–9] as well as the gauge boson prop-
agator in fixed (Landau) gauge [10]. Electric and magnetic
screening are simultanously accessible to four-dimensional
Monte-Carlo simulations [11]. The magnetic mass obtained
from the gauge boson propagator in Landau-gauge is
rather close to that obtained from the gap equation, while
the gauge invariant gluonic correlation functions yield sev-
eral times larger mass. A consistent interpretation of the
situation emerging in the weakly coupled Higgs+Gauge
model was suggested in [12] (see also [13]) in the frame-
work of the so-called constituent model, where the mass
measured in fixed gauge correlators corresponds to the
constituent magnetic gluon mass of the confined three-
dimensional theory. The idea of the constituent gluon of-
fers a natural effective degree of freedom, which dominates
the static part of the free energy of the gluon plasma [14].

It should be noticed in this context that the relation be-
tween gap equation and the resummation of the free en-
ergy has been recently discussed in [15–17] for the scalar
field theory.

For pure hot SU(N) theory the situation is more com-
plicated since for the physically interesting range of the
temperature the value of the gauge coupling g is close to
unity and it is not clear whether the standard argument
for dimensional reduction applies.

The aim of the present paper is to investigate how far
the screening masses can be described by means of the
technique of gap equations. Since the hiearchy of scales
2πT >> gT >> g2T fails to hold in pure SU(N) theory
for the temperature range of interest we should investi-
gate a coupled set of gap equations for all the screened
modes and determine the corresponding screening lengths
simultanously.

The most straightforward way to do this would be to
derive gap equations in the full four-dimensional theory.
However, it is not known how to generalize the by-now
well-established three-dimensional gauge invariant resum-
mation [5,6] to four dimensions. There are gauge trans-
formations which might mix static and non-static modes,
therefore the resummation of the static modes only, which
was suggested in [18] violates gauge invariance. Since
screening masses are static quantities it is natural to calcu-
late them in the framework of an effective three-dimension-
al theory which is, however, valid only up to scales k ' gT .
It was shown that the accuracy of the description of such
theories is improved if in the action of the effective the-
ory beside superrenormalizable operators one also takes
into account higher dimensional and non-local operators
[19]. When deriving the gap equation in the framework of
three-dimensional adjoint Higgs model it is important to
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address the question whether the symmetric or the bro-
ken phase is the physical one. In [7,20] it has been argued
that symmetric phase is the physical one, the study of the
Debye screening also suggests that the presence of the A0
condensate is physically unfavourable, therefore in what
follows we will assume no A0 backround.

In this paper we shall assume only the separation of
the static and non-static scales in the pure SU(N) gauge
theory, that is we assume that g(T ) << 2π. In this way we
will be interested in the derivation and the solution of the
coupled gap equations of the electric and magnetic static
fields. To our best knowledge our paper represents the first
attempt for this simple generalisation of the gap-equation
approach, where till now electric and magnetic screening
masses have been discussed separately. The closest to the
spirit of our investigation is the analysis of the sensitivity
of higher order corrections of the electric screening mass to
the existence and the value of a magnetic screening scale
by Rebhan [21].

The paper proceeds as follows: in Sect. 2 we shall cal-
culate screening masses from the local superrenormaliz-
able effective theory (i.e the adjoint Higgs model) of the
hot SU(N) gauge theory using a gauge-dependent resum-
mation scheme (namely, Rξ-gauge). The temperature and
gauge-parameter dependence of the results are discussed
in detail. Gauge invariant resummation schemes are used
for the derivation of similar coupled gap-equations in
Sect. 3. In Sect. 4 we shall analyze the effect of higher di-
mensional and non-local operators in the gap equation. In
Sect. 5 detailed comparison with the results of earlier and
the most recent numerical investigations will be presented
together with our conclusions.

2 Gauge non-invariant resummation scheme

This scheme for the evaluation of the magnetic mass was
first suggested in [2] and for the Debye mass in [21]. It was
noticed in [2] that magnetic mass obtained in this scheme
is gauge dependent and therefore cannot be regarded as
physically meaningfull. However, even in gauge invariant
resummation schemes the value of the magnetic mass can-
not be defined unambigously, because it depends on the
specific resummation scheme [22]. Therefore it seems in-
teresting to calculate the magnetic mass in a gauge non-
invariant scheme just to compare the amount of gauge
dependence with the ambiguity of gauge invariant ap-
proaches.

The three-dimensional effective Lagrangian relevant
for 1-loop calculations can be written with Rξ gauge fixing
as

L =
1
4
F a

ijF
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Here we have added and substracted a mass term for
Ai, A0 and the ghost fields with their exact screening
masses. m2

D0 is the tree-level (from the point of view of
the effective theory) Debye mass for A0, which was gen-
erated during the procedure of the dimensional reduction.
The other parameter of the effective theory is the three-
dimensional gauge coupling g3 which appears in the defi-
nitions of the covariant derivatives and the field strength
tensor. At 1-loop level one has m2

D0 = g2NT 2/3 and
g2
3 = g2T , where g = g(T ) is the gauge coupling of the

original theory. The propagators can be read from the
quadratic part of the Lagrangian and can be found in the
Appendix, where one also finds some details of the evalua-
tion of the relevant Feynman diagrams contributing to the
different 2-point functions. It should be noticed when per-
forming the resummation of the pure gauge sector with the
unique mass term of mass mT the longitudinal and trans-
verse gluons acquire different masses, which are, however
related by mL =

√
ξmT (mT is the transverse and mL

is the longitudinal mass). It is also possible to perform
the resummation by introducing independent masses for
the longitudinal and transverse gluons, but then the corre-
sponding gap equations will have only complex solutions.
The gauge boson self-energy can be decomposed as

Πij(k) = (δij − kikj

k2 )ΠT (k, mT , mD, mG)

+
kikj

k2 ΠL(k, mT , mD, mG) . (2)

In the Appendix we give the expression of Πij in terms of a
few fundamental three-dimensional loop-integrals. These
integrals are easily evaluated and an explicit but very cum-
bersome functional form can be written for the longitudi-
nal and transversal projections of the polarisation matrix.

The self energy for A0 was first calculated in [21]:
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= m2
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g2N
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. (3)

The on-shell gap equations now can be written as

m2
T = ΠT (k = imT , mT , mD, mG) ,

m2
D = Π00(k = imD, mD, mT ) , (4)

m2
G = ΠG(k = imG, mT , mG) .

On the mass-shell Π00(k = imD, mD, mT ) is gauge pa-
rameter independent, but ΠT (k = imT , mT , mD, mG) and
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Fig. 1. The temperature dependence of mD/mD0 (solid line)
and mT /mBP

T for Feynman (ξ = 1) gauge, mD0 is the leading
order result for the Debye mass and mBP

T is the value of the
magnetic mass obtained by Buchmüller and Philipsen for pure
SU(2) gauge theory
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Fig. 2. The dependence of mD/mD0 (solid line) and mT /mBP
T

on gauge parameter ξ at T = 104Tc, mD0 is the leading order
result for the Debye mass and mBP

T is the value of the magnetic
mass obtained by Buchmüller and Philipsen for pure SU(2)
gauge theory

ΠG(k = imG, mT , mG) do depend on the gauge fixing pa-
rameter, therefore the masses obtained from this coupled
set of gap equations are gauge dependent.

In the following numerical investigations we shall con-
sider the case of the SU(2) gauge group. The 4-dimension-
al coupling constant is taken at scale µ̄ = 2πT , where µ̄ is
the MS scale and 1-loop relation for the gauge parameter
of the effective theory is used. To set the temperature scale
we use the relation Tc/ΛMS = 1.06 obtained from nu-
merical simulation of the finite temperature SU(2) gauge
theory [11].

The temperature dependence of mD in a specific gauge
is plotted in Fig. 1. As one can see from the plot mD re-
ceives 30% positive correction compared to the leading or-
der result, while the magnetic mass stays very close to the
value calculated by Buchmüller and Philipsen [5], given
below in (6). Since the masses are gauge dependent in
this approach, it is important to investigate the depen-
dence of the screening masses on the gauge parameter ξ.
It turns out that one gets real values for the masses from
the gap equations only if ξ ∈ [1, 5). The dependence of
the screening masses on ξ in this range is shown in Fig. 2.

One can see, that the ξ-dependence of mT in this interval
is 40%, while for mD it remains in the 10% range.

3 Gauge invariant approach

Gauge invariant approaches for the magnetic mass gener-
ation in three-dimensional pure SU(N) gauge theory were
suggested by Buchmüller and Philipsen (BP) [5] and by
Alexanian and Nair (AN) [6]. The approach of AN uses the
hard thermal loop inspired effective action for the resum-
mation of the magnetic sector. The approach of BP using
a gauged σ-model, goes over to the SU(N) gauge theory
in the limit of infinitely heavy scalar field. Till now only
these two gauge invariant schemes are known to provide
real values for the magnetic mass [22].

In these approaches the gauge boson self-energy is au-
tomatically transverse and there is no need to project the
transverse part from the polarisation tensor. The corre-
sponding expression for the on-shell self-energy reads

ΠT (k = imT , mT ) = CmT , (5)

where

C =

{
g2N
8π [ 214 ln 3 − 1] , AN ,

g2N
8π [ 6316 ln 3 − 3

4 ] , BP .
(6)

Since we are interested in calculating the screening
masses in the three-dimensional SU(N) adjoint Higgs
model, ΠT (k, mT ) should be supplemented by the cor-
responding contribution coming from A0 fields. This con-
tribution is calculated from diagrams d) and e) of the Ap-
pendix to be
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)
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It is transverse and gauge parameter independent, it also
does not depend on the specific resummation scheme ap-
plied to the magnetostatic sector. It should be also no-
ticed that it starts to contribute to the gap equation at
O(g5) level in the weak coupling regime, thus preserving
the magnetic mass scale to be of order g2T . This is the
reason why no “hierarchy” problem arises in this case, at
least for moderate g values.

The self energy of A0 depends on the specific resum-
mation scheme. For BP resummation it reads

Π00(k, mD, mT )

= m2
D0

g2N

4π

[
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k
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k
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. (8)

This expression is different from the expression of Π00
calculated in the gauge non-invariant approach (see (3))
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Fig. 3. The temperature dependence of the scaled Debye mass
for BP resummation scheme (solid) and for the AN resumma-
tion scheme (dashed). The scaling factor is mD0
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Fig. 4. The temperature dependence of the scaled magnetic
mass for BP resummation scheme (solid) and for the AN re-
summation scheme (dashed). The scaling factors are mBP

T and
mAN

T , respectively

but its analytic properties and on-shell value is the same
as of (3). For the resummation scheme of AN the self-
energy expression of A0 coincides with (3) if it is evaluated
at ξ = 1. The coupled set of gap equations now can be
written as

m2
T = CmT + δΠA0(k = imT , mD) ,

m2
D = Π00(k = imD, mD, mT ) . (9)

The temperature dependence of mD obtained from this
coupled set of gap equations is shown in Fig. 3 for both
schemes, where we have again normalized the Debye mass
by the leading order result, mD0. The temperature depen-
dence of the magnetic mass is shown in Fig. 4, where we
have normalized mT by the value of the magnetic mass
obtained for pure three-dimensional SU(2) theory, in the
BP (AN) gauge invariant calculations [5,6]. As one can see
the contribution of A0 to the magnetic mass is between 1
and 3%. From Figs. 3 and 4 it is also seen that the temper-
ature dependence of the screening masses is very similar
to the temperature dependence of the respective leading
order results.

4 Contribution of non-local operators
to the gap equation

In the previous section the gap equations were derived for
an effective local superrenormalizable theory. In this case
the effect of non-static modes in the 2-point function were
represented by the thermal mass for A0 and by the field
renormalization factors which relate 3d fields to the cor-
responding 4d ones. It was shown in [23,24] that when
one performs the procedure of the dimensional reduction
in Rξ gauges the parameters of the superrenormalizable
effective theory are gauge independent, only the expres-
sions of 3d fields in terms of 4d ones depend on the gauge
parameter. However, this does not hold for higher dimen-
sional and non-local operators, which are generally gauge
dependent. At 1-loop level the only diagrams contributing
non-locally to the gap equation are those which have two
non-static line inside the loop, diagrams with one static
and one non-static line inside the loop are forbiden be-
cause of 4-momentum conservation. Therefore at 1-loop
level the non-locality scale (2πT )−1 is much smaller than
the relevant length scales.

In general the non-static contribution to the static 2-
point function Πµν(k0 = 0, k) can be written as

∆Πns
µν(k0 = 0, k) = δ0

µδ0
νΠns

00 (k) + δi
µδj

ν(δij − kikj

k2 )Π(k) ,

Πns
00 (k) = m2

D0 + a1(µ, ξ)k2 + T 2
∞∑

n=2

an(ξ)(
k2

2πT
)
2n

,

Πns(k) = b1(µ, ξ)k2 + T 2
∞∑

n=2

bn(ξ)(
k2

2πT
)
2n

, (10)

where the coefficents an and bn can be calculated for arbi-
trary n. The first two terms in the expressions of Π00 and
first term of Π(k) are already included into the 3d effec-
tive theory as part of the tree level mass and the definition
of the 3d fields in term of 4d fields. The last two sums
will contribute to the 3d effective lagrangian as quadratic
non-local operators. There are also higher dimensional op-
erators as well as non-local 3- and 4-point verticies in the
effective lagrangian, however, since we restrict our inter-
est to 1-loop gap equations these are not important for us.
Their contribution would correspond to 2 or higher loop
contribution in the full four-dimensional theory.

We have estimated by direct numerical evaluation of
the infinite sums in (10) the contribution of non-local
operators to be less than 1% in the temperature range
T =

(
3 − 104

)
Tc, thus neither their contribution nor their

gauge dependence is essential.

5 Conclusion

In the present paper we have made an attempt to extract
the electric and magnetic screening masses from the cou-
pled set of gap equations of the three-dimensional SU(N)
adjoint Higgs model considered as an effective theory of
QCD. The screening masses have been studied using gauge
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non-invariant as well as gauge invariant resummation
schemes. In the gauge non-invariant formalism we have ob-
served rather strong gauge parameter dependence, there-
fore the results extracted from it are not very informative.
It is still interesting to note that in Feynman gauge (ξ = 1)
the results for the magnetic mass are rather close to those
obtained from the gauge invariant resummation scheme of
Buchmüller and Philipsen. In gauge invariant treatments
we have compared two different resummation schemes,
that of Buchmüller and Philipsen (BP) and one proposed
by Alexanian and Nair (AN). Qualitativelly these two re-
summations lead to similar results, but in the BP scheme
one has smaller magnetic mass and larger Debye mass
than in the AN scheme.

Let us summarize our view on the interaction of the
electric A0 and the magnetic Ai fields. In both schemes one
can see that the dynamics of A0 is largely influenced by the
magnetic sector, however, no similar feedback on the mag-
netic sector is seen, the magnetic masses calculated from
the coupled gap equations provide screening masses which
are 1% smaller than evaluated in the pure gauge theory.
This fact suggests that the role of the adjoint scalar field
is similar to that of the fundamental Higgs field, because
the magnetic mass calculated in the symmetric phase of
SU(2) Higgs theory using lattice Monte-Carlo simulation
with Landau gauge fixing is also roughly the same as in
pure gauge theory [10].

Finally we compare our results with recent Monte-
Carlo data for the screening masses obtained in 4d fi-
nite temperature SU(2) gauge theory [11]. The data on
the magnetic mass found from this simulation in the tem-
perature range T = (10 − 104)Tc can be fitted well by
the formula mT = 0.456(6)g2T . This value of the mag-
netic mass is considerably larger than what one obtains
from the magnetic gap equation and 3d simulations, where
the results are approximately mT = 0.28g2T for the BP
scheme, 0.38g2T for AN scheme and 0.35g2T for 3d sim-
ulation. Also our results are rather close to these values,
as we have demonstrated in Sects. 2 and 3.

The data from Monte-Carlo simulation for the De-
bye mass in the above mentioned temperature interval
can be fitted using the following leading order-like anzatz√

1.69(2)g(T )T [11], which means that the Debye mass
is roughly 1.6mD0, where mD0 is the leading order re-
sult. The gap equations at the same time, as one can see
from Fig. 3 give (1.2 − 1.3)mD0, depending on the resum-
mation scheme. While there is no quantitative agreement
between masses measured in Monte-Carlo simulation and
those obtained from the gap equation, the temperature
dependence of these masses in the temperature interval
T = (10 − 104)Tc seems to follow the temperature depen-
dence of the leading order result.

At the moment we have no explanation for the reasons
of the discrepancy between the results of the 4d simula-
tion and the 3d gap equations and simulation. The obser-
vations may imply that either higher loop contributions to
the gap equation are important and therefore the dynam-
ics of A0 is not faithfully reflected by 1-loop gap equations
or the dimensional reduction is not valid. In [25] the self-

consistency of the gap equation has been examined in the
entire momentum space in gauge invariant way. This in-
vestigation reveals some inconsistencies of the 1-loop gap
equation, which are conjectured to be removed by higher
order calculation. It remains an open question how far
these inconsistencies influence the pole mass. We believe,
however, that further studies in this direction, which in-
clude 2-loop gap equations [26] and lattice study of the
effective adjoint Higgs model [27] will clarify part of these
problems.
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Appendix

The propagators of different fields can be read off the
quadratic part of the Lagrangian. These exact propaga-
tors are listed below. The gauge boson propagator:

Dij(k) =
(

δij − kikj

k2

)
1

k2 + m2
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+
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k2 + m2
L

, (11)
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ξmT , the propagator for the adjoint scalar
field A0:

DA0(k) =
1
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, (12)

and finally, the ghost propagator:

Σ(k) =
1

k2 + m2
G

. (13)

The Feynman diagrams contributing to the 2-point
functions of the relevant fields are shown below. In these
diagrams every line corresponds to a resummed propaga-
tor. The wavy line corresponds to the gauge bosons, the
solid one to A0 and the dashed one to the ghost. The cor-
responding analytic expressions can be written in terms
of the following standard integrals:
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These integrals were evaluated using dimensional regular-
ization.

The diagrams contributing to the 2-point functions of
Ai are the following:

a b c

d e

with the analytical contribution:

Π(a)mn

ab (k) (23)

= g2Nδab

[
Jmn(k, mG, mG) + kmJn(k, mG, mG)

]
,

Π(b)mn

ab = g2Nδabδ
mn

[
4
3
j(mT ) +

2
3
ξj(mL)

]
, (24)

Π(c)mn

ab (k)

= −1
2
g2Nδab

{
δmn

[
−
(
m2

T + k2
)2

m2
T

× (J(k, mT , 0) + J(k, 0, mT ))

+
2k2

(
4m2

T + k2
)

m2
T

J(k, mT , mT )

−2
(

1 +
k2

m2
T

)
j(mT )

]

+kmkn

[
−
(
m2

T + k2
)2

4m4
T

J(k, mT , 0)

+
(

k4

4m4
T

− k2

m2
T

− 6
)

J(k, mT , mT )

+
(

− k4

4m4
T

+
3
2

k2

m2
T

+
7
4

)
J(k, 0, mT )

+
3

2m2
T

j(mT ) +
k4

4m4
T

I(k, 1, 1)
]

+
[
−kmkn

m2
T

j(mT ) +
k4

4m4
T

Imn(k, 1, 1)

+
(

k4

4m4 + 4
k2

m2
T

+ 8
)

Jmn(k, mT , mT )

− 2
m2

T

lmn(mT ) −
(

1 +
k2

m2
T

)2

× (Jmn(k, 0, mT ) + Jmn(k, mT , 0))
]

+
[
−kmkn

m2
T

j(mT ) +
k4

m4
T

kmIn(k, 1, 1)

−
(

k2

m2
T

+ 1
)(

k2

m2
T

+ 3
)

kmJn(k, mT , 0)

+
(

1 − k4

m4
T

)
kmJn(k, 0, mT )

+
(

k4

m4
T

+ 4
k2

m2
T

+ 8
)

kmJn(k, mT , mT )
]}

−g2Nδabξ

{
δmn

[(
m2

T + k2
)2

m2
L

(J(k, 0, mT )

−J(k, mL, mT )) +

(
m2

T + m2
L + k2

)
m2

L

j(mL)
]

+
kmkn

4m2
T m2

L

[(
6k2m2

T + 7m4
T + 2m2

T m2
L
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− (m2
L + k2)2)J(k, mL, mT )

+m2
Lj(mT ) − 7m2

T j(mL)
+
(
k4 − 6k2m2

T − 7m4
T

)
J(k, 0, mT )

−k4I(k, 1, 1) +
(
m2

L + k2)2 J(k, mL, 0)
]

+
1

m2
Lm2

T

[
m2

T kmknj(mL)

+k4 (Jmn(k, mL, 0) − Imn(k, 1, 1))

+
(
k2 + m2

T

)2 (
Jmn(k, 0, mT )

−Jmn(k, mL, mT )
)

+ m2
T lmn(mL)

]

+
[
−
(
k2 + m2

T

) (
k2 − m2

T + m2
L

)
m2

Lm2
T

kmJn(k, mL, mT )

− k4

m2
Lm2

T

kmIn(k, 1, 1) +
kmkn

m2
L

j(mL)

+
k2

m2
T

(
k2

m2
L

+ 1
)

kmJn(k, mL, 0)

+
k4 − m4

T

m2
T m2

L

kmJn(k, 0, mT )
]}

−1
2
Nδabξ

2
{

kmkn

4m4
L

[
−2m2

Lj(mL)

+k4 (I(k, 1, 1) + J(k, mL, mL))

− (k2 + m2
L

)2
J(k, mL, 0) − (k2 − m2

L

)2
J(k, 0, mL)

]

+
k4

m4
L

[
Imn(k, 1, 1) − Jmn(k, mL, 0)

−Jmn(k, 0, mL) + Jmn(k, mL, mL)
]

+
[
− k2

m2
L

(
k2

m2
L

+ 1
)

kmJn(k, mL, 0)

− k2

m2
L

(
k2

m2
L

− 1
)

kmJn(k, 0, mL)

+
k4

m4
L

(kmJn(k, mL, mL) + knIm(k, 1, 1))
]}

, (25)

Π(d)mn

ab (k)

= −1
2
g2Nδab

[
4Jmn(k, mD, mD)

+4kmJn(k, mD, mD) + kmknJ(k, mD, mD)
]

, (26)

Π(e)mn

ab = g2Nδabδ
mnj(mD) . (27)

Diagrams a), b) and c) were calculated in [28] using the
Landau gauge (ξ = 0). The results of these calculation
coincide with ours if in the above formulas one sets ξ = 0.

The diagrams contributing to the 2-point function of
A0 are given by diagrams f) and g):

f g

The corresponding analytical contribution is:

Π(f)µν

ab (k)

= −g2Nδabδ
0µδ0ν

[
j(mT ) − k2 + m2

D

m2
T

j(mT )

−
(
m2

D + k2
)2

m2
T

J(k, mD, 0) +
1

m2
T

(
2k2 (m2

T + m2
D

)2
+k4 +

(
m2

T − m2
D

)2)
J(k, mD, mT ) − j(mD)

]

−g2Nδabδ
0µδ0ν ξ

m2
L

[(
m2

L + m2
D + k2) j(mL)

+
(
m2

D + k2)2 J(k, mD, 0)

− (m2
D + k2)2 J(k, mD, mL)

]
, (28)

Π(g)µν

ab = g2Nδabδ
0µδ0ν

[
2j(mT ) + ξj(mL)

]
. (29)

Finally the single diagram contributing to the ghost 2-
point function is given by diagram h):

h

The corresponding analytical contribution is:

Σab(k)=−1
2
g2Nδab

{[
m2

T − (k2 + m2
G

)
4m2

T

j(mT )

−
(
k2 + m2

G

)2
4m2

T

J(k, mG, 0)

+

((
k2 + m2

G

)2
4m2

T

+
k2 − m2

G

2
+

m2
T

4

)

×J(k, mG, mT ) − 1
4
j(mG)

]

−ξ

[((
k2 + m2

G

)2
4m2

L

+
k2 + m2

G

2
+

m2
L

4

)

×J(k, mG, mL) − 1
4
j(mG)

−
(
k2 + m2

G

)2
4m2

L

J(k, mG, 0)

−3m2
L + k2 + m2

G

4m2
L

j(mL)
]}

. (30)
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9. M. Gürtler, E.M. Ilgenfritz, J. Kripfganz, H. Perlt, A.

Schiller Nucl. Phys. B483 (1997) 383
10. F. Karsch, T. Neuhaus, A. Patkós, J. Rank, Nucl. Phys.

B474 (1996) 217
11. U.M. Heller, F. Karsch, J. Rank, hep-lat/9710033
12. W. Buchmüller, O. Philipsen, Phys. Lett. B397 (1997) 112

13. H.-G. Dosch, J. Kripfganz, A. Laser, M.G. Schmidt, Phys.
Lett B365 (1995) 213
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